A Highly Sensitive Assay for Monitoring the Secretory Pathway and ER Stress

نویسندگان

  • Christian E. Badr
  • Jeffrey W. Hewett
  • Xandra O. Breakefield
  • Bakhos A. Tannous
چکیده

BACKGROUND The secretory pathway is a critical index of the capacity of cells to incorporate proteins into cellular membranes and secrete proteins into the extracellular space. Importantly it is disrupted in response to stress to the endoplasmic reticulum that can be induced by a variety of factors, including expression of mutant proteins and physiologic stress. Activation of the ER stress response is critical in the etiology of a number of diseases, such as diabetes and neurodegeneration, as well as cancer. We have developed a highly sensitive assay to monitor processing of proteins through the secretory pathway and endoplasmic reticulum (ER) stress in real-time based on the naturally secreted Gaussia luciferase (Gluc). METHODOLOGY/PRINCIPLE FINDINGS An expression cassette for Gluc was delivered to cells, and its secretion was monitored by measuring luciferase activity in the conditioned medium. Gluc secretion was decreased down to 90% when these cells were treated with drugs that interfere with the secretory pathway at different steps. Fusing Gluc to a fluorescent protein allowed quantitation and visualization of the secretory pathway in real-time. Expression of this reporter protein did not itself elicit an ER stress response in cells; however, Gluc proved very sensitive at sensing this type of stress, which is associated with a temporary decrease in processing of proteins through the secretory pathway. The Gluc secretion assay was over 20,000-fold more sensitive as compared to the secreted alkaline phosphatase (SEAP), a well established assay for monitoring of protein processing and ER stress in mammalian cells. CONCLUSIONS/SIGNIFICANCE The Gluc assay provides a fast, quantitative and sensitive technique to monitor the secretory pathway and ER stress and its compatibility with high throughput screening will allow discovery of drugs for treatment of conditions in which the ER stress is generally induced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ

Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER...

متن کامل

The unfolded protein response and translation attenuation: a modelling approach.

Unfolded protein response (UPR) is a stress response to increased levels of unfolded proteins in the endoplasmic reticulum (ER). To deal with this stress, all eukaryotic cells share a well-conserved strategy--the upregulation of chaperons and proteases to facilitate protein folding and to degrade the misfolded proteins. For metazoans, however, an additional and seemingly redundant strategy has ...

متن کامل

When supply does not meet demand-ER stress and plant programmed cell death

The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When pertur...

متن کامل

Rationalizing translation attenuation in the network architecture of the unfolded protein response.

Increased levels of unfolded proteins in the endoplasmic reticulum (ER) of all eukaryotes trigger the unfolded protein response (UPR). Lower eukaryotes solely use an ancient UPR mechanism, whereby they up-regulate ER-resident chaperones and other enzymatic activities to augment protein folding and enhance degradation of misfolded proteins. Metazoans have evolved an additional mechanism through ...

متن کامل

The Golgi complex in stress and death

The Golgi complex is a central organelle of the secretory pathway where sorting and processing of cargo occurs. While Golgi structure is important for the efficient processing of secretory cargo, the unusual organization suggests additional potential functions. The Golgi is disassembled after various cellular stresses, and we hypothesize that Golgi disassembly activates a stress signaling pathw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007